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1. The Real and Complex Number System

Theorem (1.20). Part (a) If x, y ∈ R and x > 0, then there is a positive integer n such that
nx > y. Part (b) If x, y ∈ R and x < y then there exists a p ∈ Q such that x < p < y.

Proof. We prove part (a) first. Consider the set A = {nx | n ∈ N}. For the sake of
contradiction suppose there does not exist a natural number n such that nx > y. Then for
all a ∈ A we have a ≤ y. Then A is bounded above so then let α = supA. Since 0 > −x
and α > 0 it follows α > α− x. Then α− x is not an upper bound. If α− x is not an upper
bound then there exists some natural number m such that mx > α−x. Then (m+1)x > α.
This is a contradiction. Hence, there exists a natural number n such that nx > y.

Now we prove part (b). Let x, y ∈ R and x < y. If x ≤ 0 then by the archimedean
property (part a) there exists a natural number k such that k > −x. It follows x + k > 0.
Then we have

0 < x+ k < y + k

If x > 0 then let k = 0. Let x0 = x and y0 = y. Then we have 0 < x0 < y0. Now we show
there exists a rational number p such that x0 < p < y0.
Since y0 > x0 then y0 − x0 > 0. By the archimedean property there exists a natural

number m such that m(y0 − x0) > 1. Then we have my0 −mx0 > 1 so then

mx0 < mx0 + 1 < my0

Now we show there exists a natural number d such that mx0 < d ≤ mx0 + 1. Consider the
set B = {n ∈ N | n > mx0}. Note B ⊂ N so then there is a least element in B. Take n0 to
be the least element. Then n0 ≤ j for all j ∈ B. Now we show n0 ≤ mx0 + 1. For the sake
of contradiction, suppose n0 > mx0 + 1. Then n0 − 1 > mx0. Moreover, since mx0 ≥ 1 and
n0 > mx0 it follows n0 > 1 so then n0 − 1 ≥ 1 so n0 − 1 is also a natural number. So then
n0 − 1 ∈ N and n0 − 1 > mx0 so n0 − 1 ∈ B. This is a contradiction since n0 is the least
element in B. It follows n0 ≤ mx0 + 1.
Altogether we have mx0 < n0 ≤ mx0 + 1. Then

mx0 < n0 ≤ mx0 + 1 < my0

and hence mx0 < n0 < my0 Since m ∈ N there exists 1/m. Then

x0 <
n0

m
< y0

Recall x0 = x+ k and y0 = y + k. Then we have

x <
n0

m
+ k < y

x <
n0 +mk

m
< y

Since n0,m ∈ N and k ∈ Z it follows (n0 +mk)/m ∈ Q. This concludes the proof. □

Exercise. (8) Prove that no order can be defined in the complex field that turns it into an
ordered field.

Proof. In order for the complex field to be an ordered field, the set of complex numbers must
be an ordered set. This means by definition of an ordered set that for any x, y ∈ C we must
have exactly one of the following to be true

x < y, x = y, or x > y
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Then this should be true for i and 0. For the sake of contradiction suppose one of these is
exactly true for i and 0. Then there are three cases to test. First, suppose i = 0. Since 0
is the additive identity it follows we must have i+ z = z for all z ∈ C which is false. To be
more explicit let the complex numbers be a set of two-tuples of real numbers. Then addition
in C is defined as (a, b)+C (c, d) = (a+ b, c+d) and i = (0, 1) and zero formally is 0 = (0, 0).
It follows i ̸= 0 since (0, 1) ̸= (0, 0). Second, suppose i > 0. Then by Definition 1.17(ii) of
Rudin it follows

i2 > 0

and by definition of i we have
−1 > 0

Then applying Definition 1.17(ii) again, we get

−1(i) > 0

By Proposition 1.16(c) it follows
−(1i) > 0

and by (M4) we have
−i > 0

Then adding i to both sides
i+ (−i) > i+ 0

By (A5) (additive inverse) we have
0 > i+ 0

By (A2) (commutativity) we have
0 > 0 + i

By (A4) (additive identity) we have
0 > i

But this is a contradiction. Third, suppose i < 0. Then

i+ (−i) < 0 + (−i)

By (A5) (addition inverse) we have

0 < 0 + (−i)

By (A4) (addition identity) we have
0 < −i

Since −i > 0 by Definition 1.17(ii) we have

(−i)(−i) > 0

By Proposition 1.16(d) we have
i2 > 0

By definition of i we have
−1 > 0

Since −1 > 0 and −i > 0 by Definition 1.17(ii) we have

(−1)(−i) > 0

By Proposition 1.16(d) we have
1i > 0
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By axiom (M4) we have
i > 0

This is a contradiction. In all three cases we have reached contradictions. Therefore, the set
of complex numbers cannot be an ordered field. □

Exercise. (12) If z1, ..., zn are complex prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|

Proof. First we prove that |z1+z2| ≤ |z1|+|z2|. And before this is prove we prove Re(λ) ≤ |λ|
where λ ∈ C. If λ is a complex number it follows λ = a + bi for some a, b ∈ R. Then
Re(λ) = a. And |λ| =

√
a2 + b2. Then we have

Re(λ) = a ≤
√
a2 ≤

√
a2 + b2 = |λ|

It follows Re(λ) ≤ |λ|. Let λ = zw where z, w ∈ C. It follows
2Re(zw) ≤ 2|zw|

which is the same as
zw + zw ≤

√
zwzw

Adding zz + ww gives

zz + zw + zw + ww ≤ zz +
√
zwzw + ww

This is equivalent to

(z + w)(z + w) ≤ (
√
zz +

√
ww)2

This is the same as
|z + w|2 ≤ (|z|+ |w|)2

Taking the square root of both sides gives

|z + w| ≤ |z|+ |w|
Thus, the triangle inequality holds for all complex numbers. Now we prove the main state-
ment of this exercise by induction. Let P (n) denote the truth of the statement

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|
Thus we just proved P (2) is true. And we know P (1) is true since |z| ≤ |z| for any complex
number. Moving on to the inductive step, we show that P (n) implies P (n + 1). Suppose
P (n) is true and we have

|z1 + z2 + · · ·+ zn + zn+1|
Then let r = zn + zn+1. Then we have

|z1 + z2 + · · ·+ zn−1 + r|
Since we now have n complex numbers and we know P (n) is true we have the following
inequality.

|z1 + z2 + · · ·+ zn + zn+1| ≤ |z1|+ |z2|+ · · ·+ |zn−1|+ |zn + zn+1|
But we already know P (2) is true so we have

|z1+z2+· · ·+zn+zn+1| ≤ |z1|+|z2|+· · ·+|zn−1|+|zn+zn+1| ≤ |z1|+|z2|+· · ·+|zn−1|+|zn|+|zn+1|
Thus P (n+ 1) holds. This concludes the induction. □
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Exercise. (13) If x, y are complex prove that

||x| − |y|| ≤ |x− y|

Proof. For any a, b, c, d ∈ R the following inequality holds.

(ad− bc)2 ≥ 0

a2d2 − 2abcd+ b2c2 ≥ 0

a2c2 + a2d2 + b2c2 + b2d2 ≥ a2c2 + 2abcd+ b2d2

(a2 + b2)(c2 + d2) ≥ (ac+ bd)2√
(a2 + b2)(c2 + d2) ≥ ac+ bd

−2
√

(a2 + b2)(c2 + d2) ≤ −2(ac+ bd)

(a2 + b2)− 2
√

(a2 + b2)(c2 + d2) + (c2 + d2) ≤ a2 − 2ac+ c2 + b2 − 2bd+ d2

(
√
a2 + b2 −

√
c2 + d2)2 ≤ (a− c)2 + (b− d)2

||a+ bi| − |c+ di||2 ≤ |(a− c) + (b− d)i|2

||a+ bi| − |c+ di|| ≤ |(a+ bi)− (c+ di)|
Any pair of complex numbers x, y ∈ C can be written in the above form where x = a + bi
and y = c+ di. It follows the inequality holds. □

Exercise. (17) Prove that

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2

if x ∈ Rk and y ∈ Rk.

Proof. The first and last equations are true by definition of the norm in euclidean k-space.

|x+ y|2 + |x− y|2 =
k∑

i=1

(xi + yi)
2 +

k∑
i=1

(xi − yi)
2

=
k∑

i=1

(xi + yi)
2 + (xi − yi)

2

=
k∑

i=1

x2
i + 2xiyi + y2i + x2

i − 2xiyi + y2i

=
k∑

i=1

2x2
i + 2y2i

= 2
k∑

i=1

x2
i + 2

j∑
i=1

y2i

= 2|x|2 + 2|y|2

□

Exercise (14). If z is a complex number such that |z| = 1, compute

|1 + z|2 + |1− z|2
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Proof.

|1 + z|2 + |1− z|2 = (1 + z)(1 + zd) + (1− z)(1− zd)

= 1 + z + zd+ zzd+ 1− z − zd+ zzd

= 2 + 2zzd

□
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2. Basic Topology

Exercise. (5) Construct a bounded set of real numbers with exactly three limit points.

Let the set be { 1
n
|n ∈ N} ∪ {1 + 1

n
|n ∈ N} ∪ {2 + 1

n
|n ∈ N}

Exercise. (6) Let E ′ be the set of all limit points of a set E. Prove that E ′ is closed. Prove
that E and E has the same limit points. Do E and E ′ always have the same limit points?

Proof. Suppose E ′ is the set of all limit points of E. We show that E ′ is closed. Suppose p
is a limit point of E ′. Then by definition of a limit point for all ϵ1 > 0 there exists q ̸= p
such that d(p, q) < ϵ1 and q ∈ E ′. If q in E ′ then q must be a limit point of E. Then by
definition of a limit point we have for all ϵ2 > 0 there exists t ̸= q such that d(q, t) < ϵ2 and
t ∈ E. Moreover, we know there exists some t ̸= p since for any neighborhood Nϵ2(q) there
must be an infinite number of points t such that d(q, t) < ϵ2 and t ̸= q. Otherwise, there
would be a finite number and then there would be some closest element say t0 which would
imply the intersection of neighborhood Nd(q,t0)(q) with E would be empty which implies q
would not be a limit point. Suppose we have some neighborhood Nδ(p) where δ > 0. Then
we can choose t ∈ E such that

d(p, t) ≤ d(p, q) + d(q, t) = ϵ1 + ϵ2 < δ

where t ̸= p since ϵ1 and ϵ2 can be arbitrarily small. It follows p is a limit point of E. Since
E ′ is the set of all limit points of E ′ it follows p ∈ E ′. But we assumed p was a limit point
of E ′. It follows E ′ is closed. □

Exercise. (7) Let A1, A2, A3, · · · be subsets of a metric space. Show ...

Proof. Let Bn = ∪n
i=1Ai. We prove part (a). First we show that B′

n ⊂ ∪n
i=1A

′
i. Suppose

p is a limit point of Bn. For the sake of contradiction suppose that p is not a limit point
for any Ai or p /∈ ∪n

i=1A
′
i. Then for each Ai there is some ri > 0 such that there does not

exist a point q where q ̸= p and q ∈ Nri(p) ∩ Ai. Then take the smallest radius rmin out
of all ri where i ∈ {1, 2, ..., n}. Then for rmin there does not exist a point q ̸= p such that
q ∈ Nrmin

(p) ∩ Ai for all i ∈ {1, 2, ..., n}. Since Bn = ∪n
i=1Ai it follows p is not a limit point

of Bn. This is a contradiction. Hence, p must be a limit point for some Ai so B′
n ⊂ ∪n

i=1A
′
i.

Now we show ∪n
i=1A

′
i ⊂ B′

n. Suppose p is a limit point for some Ai. By definition of a
limit point, it follows for all r > 0 there exists some q ̸= p such that q ∈ Nr(p) ∩ Ai. Since
Ai ⊂ Bn it follows if q ∈ Nr(p)∩Ai then q ∈ Nr(p)∩Bn. Thus, p must also be a limit point
of Bn. Hence, ∪n

i=1A
′
i ⊂ B′

n.
Since we have ∪n

i=1A
′
i ⊂ B′

n and B′
n ⊂ ∪n

i=1A
′
i it follows B′

n = ∪n
i=1A

′
i. That is Bn and

∪n
i=1Ai share the same set of limit points. And since Bn = ∪n

i=1Ai it follows Bn = ∪n
i=1Ai □

Proof. Now we prove part (b). □

Exercise. (8) Is every point of every open set E ⊂ R2 a limit point of E? Answer the same
question for closed sets in R2.

Proof. Suppose p ∈ E where E is an open set. By definition of an open set it follows p is an
interior point. By definition of an interior point it follows for some δ > 0 we have Nδ(p) ⊂ E.
For the sake of contradiction suppose p is not a limit point of E. Then there exists some
r > 0 such that there does not exist some point q ̸= p such that q ∈ Nr(p) ∩ E. Now there
are two cases to consider: either (1) r ≤ δ or (2) r > δ. Suppose we have case (1). If
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Nδ(p) ⊂ E it follows for all 0 < ϵ ≤ δ that Nϵ(p) ⊂ E since Nϵ(p) ⊂ Nδ(p). Since 0 < r ≤ δ
it follows Nr(p) ⊂ E. Then there exists some point q ̸= p such that q ∈ Nr(p) ∩ E which is
a contradiction. Now suppose we have case (2). Then r > δ. We have Nδ(p) ⊂ Nr(p). By
definition of a neighborhood there exists some point q ̸= p such that 0 < d(p, q) < δ. Since
Nδ(p) ⊂ E it follows q ∈ E. Moreover, q ∈ Nr(p). However, this contradicts the definition
of Nr(p). Since both cases lead to contradictions, it follows p must be a limit point of E. □

Exercise. (9) Let E◦ denote the set of all interior points of a set E. E◦ is called the interior
of E.

(a) Prove that E◦ is always open.
(b) Prove that E is open if and only if E◦ = E.
(c) If G ⊂ E and G is open, prove that G ⊂ E◦.
(d) Prove that the complement of E◦ is the closure of the complement of E.
(e) Do E and E always have the same interiors?
(f) Do E and E◦ always have the same closures?

Proof. (a) We prove that E◦ is open. Let p ∈ E◦. It follows p is an interior point of E.
By definition of an interior point there exists some r > 0 such that Nr(p) ⊂ E. Moreover,
we know every neighborhood is open. Therefore, for all points q ∈ Nr(p) we have q is an
interior point of Nr(p). Since Nr(p) ⊂ E it follows if q is an interior point of Nr(p) it is an
interior point of E. Thus all points in Nr(p) are interior points of E so then Nr(p) ⊂ E◦.
Then by definition of an interior point p must be an interior point of E◦. The choice of p
was arbitrary: we only said p ∈ E◦. Hence, all points in E◦ are interior points. It follows
E◦ is open. □

Proof. (b) We prove that E is open if and only if E◦ = E. We first prove the forward
direction. Suppose E is open. Now we show E ⊂ E◦. Let p ∈ E. Since E is open, it
follows p is an interior point. By definition of E◦ it follows p ∈ E◦. Thus E ⊂ E◦. Now we
show E◦ ⊂ E. Suppose p ∈ E◦. Then p is an interior point. Then for some r > 0 we have
Nr(p) ⊂ E. Since p ∈ Nr(p) it follows p ∈ E. Thus E◦ ⊂ E. Since we have E◦ ⊂ E and
E ⊂ E◦ we have E = E◦.
Now we prove the reverse direction. Suppose E◦ = E. We show E is open. Let p ∈ E.

Since E = E◦ it follows p is an interior points. This holds for all points p in E. It follows E
is open. □

Proof. (c) We prove that if G ⊂ E and G is open that G ⊂ E◦. Suppose p ∈ G. Since G is
open, there exists some r > 0 such that Nr(p) ⊂ G. But we know G ⊂ E so then Nr(p) ⊂ E.
It follows p is an interior point of E and E◦ is the set of all interior points of E. It follows
p ∈ E◦. Thus G ⊂ E◦. □

Proof. (d) Prove that the complement of E◦ is the closure of the complement of E. First we

show that (E◦)c ⊂ (Ec). Suppose p ∈ (E◦)c. Then p /∈ E◦. It follows p is not an interior
point. Then for every r > 0 we have there exists some q ̸= p such that q ∈ Nr(p) ∩ Ec.
For sake of contradiction suppose this were not true. Then we would have for some r > 0
that for all q ∈ Nr(p) that q ∈ E so then p would be an interior point. It follows our prior
statement is true. Then by definition of a limit point, it follows p is a limit point of Ec.
Since (Ec) is the set of all limit points of Ec it follows p ∈ (Ec). Thus (E◦)c ⊂ (Ec).

Now we show that (Ec) ⊂ (E◦)c. Suppose p ∈ (Ec). Then p is a limit point of Ec. Then
for every r > 0 there exists some q ̸= p such that q ∈ Nr(p) ∩ Ec. Now for the sake of
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contradiction suppose p /∈ (E◦)c. Then p ∈ E◦. Then there exists some r > 0 such that for
all q ∈ Nr(p) we have q ∈ E or in other words Nr(p) ⊂ E. But this contradicts the definition

of p being a limit point of Ec. Thus p ∈ (E◦)c. It follows (Ec) ⊂ (E◦)c. We have shown

both (E◦)c ⊂ (Ec) and (Ec) ⊂ (E◦)c so then (E◦)c = (Ec). □

Proof. (e) Do E and E always have the same interiors? No. Suppose Q ⊂ R. Then E◦ = ∅
and (E)◦ = R. □

Proof. (f) Do E and E◦ have the same closures? No. Same example as part (e) disproves

this. E = R and (E◦) = ∅. □

Exercise. (10) Let X be an infinite set. For p ∈ X and q ∈ X, define

d(p, q) =

{
1 (if p ̸= q)

0 (if p = q)

Prove that this is a metric. Which subsets of the resulting metric space are open? Which
are closed? Which are compact?

Proof. By definition of the metric we have d(p, q) = 0 if p = q. If p ̸= q then we have
d(p, q) = 1 > 0. Also if p = q then d(p, q) = 0 = d(q, p). If p ̸= q then d(p, q) = 1 = d(q, p).
Now we show the metric satisfies the triangle inequality. That is, we show

d(p, q) ≤ d(p, r) + d(r, q)

for all p, r, q ∈ X. There are two cases: either (1) p = q or (2) p ̸= q. Suppose we have case
(1). Then d(p, q) = 0. Then the inequality becomes

0 ≤ d(p, r) + d(r, q)

which is true for all p, r, q ∈ X since the d(a, b) ≥ 0 for all a, b ∈ X. Now suppose we have
case (2). Then d(p, q) = 1. Then the inequality becomes

1 ≤ d(p, r) + d(r, q)

Moreover, if p ̸= q then it is impossible to have both r = p and r = q for some r ∈ X
otherwise we would have p = q which is a contradiction. Therefore, for any r ∈ X we have
that either r ̸= p or r ̸= q (or both). It follows in all three cases we have d(p, r)+d(r, q) ≥ 1.
Hence, the triangle inequality holds for all cases (1) and (2). Thus, this is a valid metric. □

The empty set ∅ is open and closed vacuously. Now we find all open subsets ofX. Suppose
we have a nonempty set E. Let p be a point in E. Then the neighborhood of radius 0.5,
N0.5(p) only contains the point p. Since N0.5(p) = p it follows N0.5(p) ∈ E. Our choice of p
was arbitrary. Therefore, all points in E for interior points and so E is open. It follows all
subsets of X are open including X itself.

Now we find all closed subsets of X. Suppose E is a nonempty subset of X. To show E
is closed we must show all limit points of E are contained in E. But we show that E has
no limit points. Suppose p was a limit point of E. Then for every radius r > 0 there exists
some q ̸= p such that q ∈ Nr(p) ∩ E. Let us choose r = 0.5. Then N0.5(p) = {p}. Thus,
there are no points q such that q ̸= p and q ∈ N0.5(p). It follows there are no limit points
for any nonempty subset E of X. Hence, all subsets are closed vacuously.
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Now we show that only finite sets are compact. Suppose an infinite set was compact. We
construct an open cover such that there does not exist any finite subcover. Let E be an
infinite subset of X. Then define an open cover G as

G = ∪p∈EN0.5(p)

and we know each neighborhood N0.5(p) is open since we proved all subsets of X are open.
Moreover, N0.5(p) = {p}. Hence, we need an infinite number of neighborhoods since each
neighborhood corresponds to a single point p ∈ E. If we had chosen a finite number of
neighborhoods, then we would have covered a corresponding finite number of points, yet
there are an infinite quantity of points in E. Therefore, we must choose at minimum an
infinite subcover. Thus, no infinite subset E of X is compact. However, finite subsets are
compact. If we are given an infinite collection of open subsets G that covers a finite set
K ⊂ X, then we can choose a finite subcollection such that each open subset corresponds
to some point in K.

Exercise. (11) For x, y ∈ R, define

d1(x, y) = (x− y)2

d2(x, y) =
√

|x− y|
d3(x, y) = |x2 − y2|
d4(x, y) = |x− 2y|

d5(x, y) =
|x− y|

1 + |x− y|
(11) Determine, for each of these, whether it is a metric or not.

Proof. For each function we determine if it is a metric.

(1) The first function does not satisfy the triangle inequality.

(x− y)2 ≤ (x− z)2 + (z − y)2

Let x = −1, z = 0, y = 1. Then we have

(−1− 1)2 ≤ (−1− 0)2 + (0− 1)2

4 ≤ 1 + 1

4 ≤ 2

(2) The second function is symmetric. If x = y then d2(x, y) =
√

|x− y| = 0. If x ̸= y
then |x − y| > 0 so d2(x, y) > 0. Now we show the function satisfies the triangle
inequality. Generally, we know

|p− q| ≤ |p|+ |q|

for all p, q ∈ R. It follows

|p− q| ≤ |p|+
√

|p||q|+ |q|

Taking the square root of both sides gives√
|p− q| ≤

√
|p|+

√
|q|
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Then let p = x− z and q = y − z for some x, y, z ∈ R. then we have√
|x− y| ≤

√
|x− z|+

√
|z − y|

but this is

d2(x, y) ≤ d2(x, z) + d2(z, y)

where x, y, z ∈ R. It follows d2 is a metric.
(3) The third function is not a metric. Let x = −1 and y = 1. Then d3(−1, 1) = |1−1| =

0 even though x ̸= y.
(4) The fourth function is not symmetric. For some x, y ∈ R we have d4(x, y) ̸= d4(y, x).
(5) We show the fifth function is a metric. First if x = y then d(x, y) = 0/(1 + 0) = 0.

If x ̸= y then we have |x − y| > 0 so then d5(x, y) > 0. d5(x, y) is symmetric since
|x− y| is symmetric. And now we show d5 satisfies the triangle inequality. We know
in general for all p, q ∈ R

|p− q| ≤ |p|+ |q|

Then, we add 2|p||q|+ |p||q||p− q| on the right hand side.

|p− q| ≤ |p|+ |q|+ 2|p||q|+ |p||q||p− q|

Then we add |p− q||p| to both sides.

|p− q|+ |p− q||p| ≤ |p|+ |p− q||p|+ |q|+ 2|p||q|+ |p||q||p− q|

Then we factor.

|p− q|(1 + |p|) ≤ |p|(1 + |p− q|) + |q|+ 2|p||q|+ |p||q||p− q|

Then we add |p− q||q| to both sides.

|p− q|(1 + |p|) + |p− q||q| ≤ |p|(1 + |p− q|) + |q|+ |p− q||q|+ 2|p||q|+ |p||q||p− q|

Then we factor.

|p− q|(1 + |p|+ |q|) ≤ |p|(1 + |p− q|) + |q|(1 + |p− q|) + 2|p||q|+ |p||q||p− q|

Then we factor again.

|p− q|(1 + |p|+ |q|) ≤ |p|(1 + |p− q|+ |q|) + |q|(1 + |p− q|+ |p|) + |p||q||p− q|

Then we add |p||q||p− q| to both sides.

|p− q|(1 + |p|+ |q|) + |p||q||p− q| ≤ |p|(1 + |p− q|+ |q|) + |q|(1 + |p− q|+ |p|) + 2|p||q||p− q|

Then we factor.

|p− q|(1 + |p|+ |q|+ |p||q|) ≤ |p|(1 + |p− q|+ |q|+ |q||p− q|) + |q|(1 + |p− q|+ |p|+ |p||p− q|)

And factor again.

|p− q|(1 + |p|)(1 + |q|) ≤ |p|(1 + |q|)(1 + |p− q|) + |q|(1 + |p|)(1 + |p− q|)
11



Then we divide by (1 + |p|)(1 + |q|)(1 + |p− q|) on both sides.

|p− q|
1 + |p− q|

≤ |p|
1 + |p|

+
|q|

1 + |q|

Then let p = x− z and q = y − z for some x, y, z ∈ R

|x− y|
1 + |x− y|

≤ |x− z|
1 + |x− z|

+
|y − z|

1 + |y − z|

Then rewrite in terms of d5.

d5(x, y) ≤ d5(x, z) + d5(z, y)

Thus d5 is a metric.

□

Exercise. (12) Let K ⊂ R1 consist of 0 and numbers 1/n, for n = 1, 2, 3, · · · . Prove that
K is compact directly from the definition (without using Heine-Borel theorem).

Proof. Suppose we some subset K of R1 have an open cover {Gα} such that K ⊂ ∪αGα.
In order to show K is compact we must show that there is some finite subcover. We prove
by contradiction. Suppose there is not a finite subcover. Let Em = {1/n|n = 1, 2, 3, ...,m}.
Since Em is finite, there is a finite subcover for Em. It follows K −Em cannot be covered by
any finite subcollection of {Gα}. We know 0 ∈ K and thus 0 ∈ Gα for some α. Moreover,
since Gα is an open subset of R1 there exists r > 0 such that Nr(0) ⊂ Gα. Equivalently,
for some r > 0 for all y ∈ R1, if |0 − y| = |y| < r then y ∈ Gα. Let w be defined as the
largest natural number m such that r ≥ 1/m. It follows r ≤ x for all x ∈ Ew. Then

1
w+1

< r

otherwise 1
w+1

≥ r which contradicts the definition of w. Let T = K − Ew. Then the set T
is defined as

T = {0}
⋃

{ 1

w + 1
,

1

w + 2
, · · · }

It follows for all x ∈ T we have 0 ≤ x < r. Thus |x| < r for all x ∈ T . Then T = K −Ew ⊂
Gα. But K − Ew cannot be covered by some finite subcover. This is a contradiction.
Therefore, the set K is compact. □

Exercise. (13) Construct a compact set of real numbers whose limit points form a countable
set.

Exercise. (14) Give an example of an open cover of the segment (0, 1) which has no finite
subcover.

Exercise. (15) Show that Theorem 2.36 and its Corollary become false if the word ”com-
pact” is replaced by ”closed” or by ”bounded.”

Exercise. (16) RegardQ, the set of rational numbers, as a metric space, with d(p, q) = |p−q|.
Let E be the set of all p ∈ Q such that 2 < p2 < 3. Show that E is closed and bounded in
Q, but that E is not compact. Is E open in Q?

Proof. We first show that E is closed. It is sufficient to show if a point x is a limit point of
E then x is in E. However, we prove the contrapositive, that is, we show if x is not in E

12



then x is not a limit point of E. Note that E is defined as

E = {p ∈ Q | 2 < p2 < 3}

= {p ∈ Q | −
√
3 < p < −

√
2 or

√
2 < p <

√
3}

Suppose q /∈ E. Then we have q < −
√
3, −

√
2 < q <

√
2, or

√
3 < q. Without a loss of

generality, consider the case where −
√
2 < q <

√
2. Then there exist ε ∈ R such that ε > 0

and

−
√
2 < q − ε < q < q + ε <

√
2

Then we have Nε(q) = {w ∈ Q | d(q, w) = |q − w| < ε}. It follows that if a ∈ Nε(q) then
−
√
2 < a <

√
2. Hence, a /∈ E so then Nε(q) ⊂ Ec. It follows Nε(q) ∩ E = ∅. Hence, q

cannot be a limit point of E. The same argument applies for when q < −
√
3 and q >

√
3.

Hence, we proved the contrapositive of the desired statement. Therefore, E is closed.
Now we show E is bounded. Since E is defined as

E = {p ∈ Q | −
√
3 < p < −

√
2 or

√
2 < p <

√
3}

it follows for all x ∈ E

−2 = −
√
4 < −

√
3 < x <

√
3 <

√
4 = 2

Hence d(0, x) = |x| ≤ 2. Hence, E is bounded.
Now we show that E is not compact. We construct an open cover of E such that there

does not exist a finite subcover. By Theorem 1.20 part (b) we know there exist rational
numbers an, bn ∈ Q such that

−
√
3 <− bn < −

√
3 + 1/n

−
√
2− 1/n <− an < −

√
2

√
2 <an <

√
2 + 1/n

√
3− 1/n <bn <

√
3

for all n ∈ N. Moreover, for all n ≥ 7 we have

−bn < −an < an < bn

Note that if n < 7 then the strict inequality an < bn does not hold. Then for n ≥ 7 take
In = (−bn,−an) ∪ (an, bn) ⊂ Q where

(an, bn) = {x ∈ Q | an < x < bn}
(−bn, an) = {x ∈ Q | −bn < x < −an}

Then let I = ∪∞
n=7In. Note that (a, b) = {x ∈ Q | a < x < b} where a, b ∈ Q is an open set

since Nr(p) = (a, b) where r = (b− a)/2 and p = (a+ b)/2 ∈ Q. Hence each set (an, bn) is a
neighborhood which is open by Theorem 2.19. And In = (−bn,−an) ∪ (an, bn) is a union of
open sets which is open by Theorem 2.28. Then I is a arbitrary union of open sets which is
open by Theorem 2.28. Now we show that I is an open cover of E.
We show that E ⊂ I. Let x ∈ E. Then

√
2 < |x| <

√
3. Then by the archimedean

property there exists sufficiently large natural numbers m1 and m2 such that
√
2 <

√
2 + 1/m1 < |x| <

√
3− 1/m2 <

√
3

13



Then take m = max{m1,m2}. Then we have
√
2 + 1/m < |x| <

√
3− 1/m

It follows x ∈ Im hence x ∈ I. It follows E ⊂ I.
Now we show there does not exist a finite subcover for the collection of open sets {Iα}α∈N,α≥7.

For the sake of contradiction, suppose there were a finite subcover. Then we have

E ⊂ Iα1 ∪ Iα2 ∪ · · · ∪ Iαn

Where {α1, α2, ..., αn} ⊂ {7, 8, 9, 10, 11, ...}. Since {α1, α2, ..., αn} is finite, take the maximum
of the set. Take M = max{α1, α2, ..., αn}. Since αi ≤ M for all αi ∈ {α1, α2, ..., αn} it follows

√
2 <

√
2 +

1

M
≤

√
2 +

1

αi

and
√
3− 1

αi

≤
√
3− 1

M
<

√
3

for all αi. Hence, Im ⊃ Iαi
for all αi. It follows

IM = Iα1 ∪ Iα2 ∪ · · · ∪ Iαn

and then

E ⊂ IM

By Theorem 1.20 there is a rational q ∈ Q such that
√
3 − 1/M < q <

√
3. Hence q /∈ IM

but q ∈ E. This is a contradiction. Therefore, there does not exist a finite subcover for the
open cover {In}n∈N,n≥7. Hence, E is not compact.

Now we show that E is open. Let x ∈ E. Then x ∈ Q and 2 < x2 < 3. Then√
2 < |x| <

√
3. Then take r = min{

√
3 − |x|, |x| −

√
2}. Then Nr(x) ⊂ E. Hence, E is

open. □

Exercise (17). Let E be the set of all x ∈ [0, 1] whose decimal expansion contains only the
digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E perfect?

Proof. E is not countable. There is a bijection between the set of sequences of all 4’s and
7’s with the set of all sequences of 0’s and 1’s which we showed was uncountable. It has a
cardinality of |2N| = |R| which is uncountable. E is not dense, since the largest number in
E is 0.777... so then 1 is not a limit point of E since we can choose a neighborhood such as
N0.1(1) which does not intersect E since 1− 0.1 > 0.777....

E is not compact. Take the open cover {Gn}n∈N where Gn = (0, 0.7n) where 0.7n denotes
the digit 7 repeated n times. Equivalently let sn =

∑n
i=1 7 · 10−i. Then Gn = (0, sn). For

the sake of contradiction suppose there were a finite subcover □

Exercise (18). Consider the cantor set. It is a perfect subset of R. Every element in the
cantor set is rational. Add a value say π to every number. Then we have a perfect subset of
R that is a subset of the irrationals.

Exercise (19). There are five parts.

(a) If A and B are disjoint closed sets in some metric space X, prove that they are
separated.

(b) Prove the same for disjoint open sets.
(c) Fix p ∈ X, δ > 0, define A to the set the of all q ∈ X for which d(p, q) < δ, define B

similarly with > in place of <. Prove that A and B are separated.
(d) Prove that every connected metric space with at least two points is uncountable.
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Proof. We prove part (a) first. Note by definition of closure that A ⊂ A and B ⊂ B. Then
since A ∩B = ∅ it follows A ∩B = ∅ and A ∩B = ∅.
We prove part (b). Suppose we have two open disjoint sets A and B. We show they are

separated. We show that A∩B = ∅. For the sake of contradiction, suppose p ∈ A∩B. Then
p ∈ B. Since B is open it follows Nr(p) ⊂ B. Note p ∈ A but p /∈ A since A ∩ B = ∅. It
follows p is a limit point of A. Then by definition of a limit point, we have (Nr(p)−{p})∩A =
∅. Let q ∈ (Nr(p) − {p}) ∩ A. Then q ∈ A. But since q ∈ Nr(p) and Nr(p) ⊂ B it follows
q ∈ B. Then q ∈ A∩B which is a contradiction. It follows A∩B = ∅. The same argument
shows that A ∩B = ∅. It follows A and B are separated sets.

We prove part (c). Let A = {x ∈ X | d(p, x) < δ} and B = {x ∈ X | d(p, x) > δ}. We
show A and B are separated. By part B it is sufficient to show A and B are disjoint open
sets. For the sake of contradiction, suppose A and B are not disjoint. Let q ∈ A ∩B. Then
d(p, q) < δ and d(p, q) > δ which is a contradiction. It follows A ∩ B = ∅. We know A is
a neighborhood Nδp so it is open which since we previously prove that. Now we show B is
open. Let q ∈ B. Fix q. Then d(p, q) > δ. Then let ε = d(p, q) − δ. Then take w ∈ Nε(q).
Then d(w, q) < ε. Then

−ε < −d(w, q)

−ε+ d(p, q) < d(p, q)− d(w, q)

−(d(p, q)− δ) + d(p, q) < d(p, q)− d(w, q)

δ < d(p, q)− d(w, q)

Moreover, by the triangle inequality we have

d(p, q) ≤ d(p, w) + d(w, q)

d(p, q)− d(w, q) ≤ d(p, w)

Putting these two inequalities together we get

δ < d(p, q)− d(w, q) ≤ d(p, w)

It follows w ∈ B. It follows Nε(q) ⊂ B. Then B is open. Since A and B are both open, by
part B it follows A and B are separated.
Now we prove part (d). Consider the set C which contains at least two points p and q and

is connected. For some 0 < δ < d(p, q) define the sets

A = {x ∈ X | d(p, x) < δ}
B = {x ∈ X | d(p, x) > δ}

By part (c) we know that these sets are separated. Since C is connected, there must exist
some point w ∈ C − (A ∪ B) such that d(p, w) = δ. This holds for all δ ∈ R such that
0 < δ < d(p, q). Consider the set

Dr = {w ∈ C | d(p, w) < r}
where 0 < r < d(p, q). Note that if r1 ̸= r2 then Dr1 ∩ Dr2 = ∅. By the axiom of choice
there is a choice function

f : (0, d(p, q)) → ∪r∈(0,d(p,q))Dr

such that f(r) ∈ Dr for all r and where (0, d(p, q)) ⊂ R is an open interval in R. It follows,
we have an injection from the interval (0, d(p, q)) to ∪Dr ⊂ C. Hence, |(0, d(p, q))| ≤ |C|.
But we know the open interval (0, d(p, q)) is uncountable so then C must be uncountable. □
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Exercise (19). Let A and B be separated subsets of Rk, suppose a ∈ A, b ∈ B, and define

p(t) = (1− t)a+ tb

for t ∈ R. Put A0 = p−1(A), B0 = p−1(B).

(a) Prove that A0 and B0 are separated subsets of R.
(b) Prove that there exists t0 ∈ (0, 1) such that p(t0) /∈ A ∪B.
(c) Prove that every convex subset of Rk is connected.

Proof. We prove part (a) first. We prove by contradiction. Without a loss of generality let
t0 ∈ A0 ∩B0. We show that p(t0) ∈ A∩B. There are two cases to consider. If t0 ∈ A0 ∩B0

then p(t0) ∈ A ∩B.
Now consider the second case where t0 ∈ B0 − A0 and t0 is a limit point of A0. We show

that p(t0) is a limit point of A. It is sufficient to show that for any ε > 0 we have

(Nε(p(t0))− {p(t0)}) ∩ A ̸= ∅

Then take δ = ε/|a− b|. Since t0 /∈ A0 and is a limit point of A0 there exists a t1 ∈ A0 such
that |t0 − t1| < δ. Then we have

|p(t0)− p(t1)| = |(1− t0)a+ t0b− (1− t1)a− t1b|
= |a− b||t0 − t1|

since |t0 − t1| < δ and by definition of δ we have

|p(t0)− p(t1)| < ε

Our choice of ε was arbitrary. It follows (Nε(p(t0))−{p(t0)})∩A ̸= ∅ for all ε > 0. Hence,
p(t0) is a limit point of A. Since t0 ∈ B0 we have p(t0) ∈ B. Then p(t0) ∈ A ∩ B. This
contradicts A and B being separated sets. Hence, A0 and B0 must be separated.

Now we prove part (b). We prove by contradiction. Suppose for all t0 ∈ [0, 1] that
p(t0) ∈ A ∪ B. We know that p(0) = a and p(1) = b so then A0 is bounded above.
Specifically for all a ∈ A0 we have a < 1. Since A0 is bounded above and is a subset of R it
follows there is a least upper bound. Take α = supA0. There are two cases, either α ∈ A0

or α ∈ B0 since for all t0 ∈ [0, 1] we have p(t0) ∈ A ∪B.
Consider the case where α ∈ A0. Take ε > 0. Then consider the interval (α − ε, α + ε).

Since α is the supremum of A0 and for all t0 ∈ [0, 1] we have p(t0) ∈ A∪B, it follows for all
1 ≥ t0 > α that p(t0) ∈ B and t0 ∈ B0. There exists β ∈ R such that α < β < α + ε and
since β > α we have β ∈ B0. Hence, (Nε(α) − {α}) ∩ B0 ̸= ∅. Thus, α is a limit point of
B0. Then α ∈ A0 ∩B0.

Now consider the case where α /∈ A0. Then α ∈ B0. Now we show α is a limit point of
A0. Since α = supA0, for any ε > 0 consider the interval (α − ε, α + ε). Since α /∈ A0 and
by definition of supremum, there exists α′ such that α − ε < α′ < α and α′ ∈ A0. This is
true for all ε > 0. Hence, (Nε(α)− {α}) ∩ A0 ̸= ∅. Thus, α is a limit point of A0. So then
α ∈ A0 ∩B0.

In part (a) we showed that A0 and B0 are separated sets. Yet we just showed that either
A0 ∩ B0 ̸= ∅ or A0 ∩ B0 ̸= ∅ which implies A0 and B0 are not separated. This is a
contradiction. Hence, there exists t0 ∈ (0, 1) such that p(t0) /∈ A ∪B.

Now we prove part (c). We show that every convex subset of Rk is connected. For the
sake of contradiction, suppose there exists a convex set C in Rk that is not connected. Then
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C is a union of two separated sets, say A and B. Then take a ∈ A and b ∈ B. Then consider
the function p : (0, 1) → Rk defined as

p(t) = (1− t)a+ tb

By part (b), there exists some t0 ∈ (0, 1) such that p(t0) /∈ A∪B. Since C = A∪B then we
have for some t0 that p(t0) /∈ C. But since C is convex, we must have for all t0 ∈ (0, 1) that
p(t0) ∈ C. This is a contradiction. Therefore, all convex sets are connected. □

Exercise (22). A metric space is called separable if it contains a countable dense subset.
Show that Rk is separable.

Proof. Consider the set Qk. It is a subset of Rk and is a finite cartesian product of countable
sets which is countable. Now we have to show Qk is dense in Rk. Take ε > 0 and x ∈ Rk.
Since Q is dense in R for every xi ∈ R there exists a pi ∈ Q such that xi ̸= pi and

Then we have

|pi − xi| <
ε√
k

then we have

|pi − xi|2 <
ε2

k
k∑

i=1

(pi − xi)
2 < ε2

(
k∑

i=1

(pi − xi)
2

)(1/2)

< ε

Let p = (p1, p2, ..., pk). It follows p ∈ Nε(x) − {x}. Hence, x is a limit point of Q for all
x ∈ R. Hence Rk is separable. □

Exercise (23). Prove that every separable metric space has a countable base.

Proof. Let (X, d) be a separable metric space. Since our metric space is separable there exists
a countable dense subset of X, say E. Then define B as the collection of all neighborhoods
of rational radii for all points in E. It follows there is a bijection f : E ×Q → B. Since E is
countable and Q is countable, it follows E ×Q is countable. Hence, B is countable.

Now we show that B is a base for our metric space (X, d). Let U be an open set and let
p be a point in U . By definition of an open set, it follows there exists some ε > 0 such that
Nε(p) ⊂ U . There are two cases, either p ∈ E or p /∈ E.

If p ∈ E then take δ ∈ Q as 0 < δ < ε. Then Nδ(p) is a open set in B. And p ∈ Nδ(p) ⊂
Nε(p) ⊂ U .

Now consider the case where p /∈ E. Then let δ ∈ Q be constrained to 0 < δ < ε. Since
E is a dense subset of X, it follows p is a limit point of E. Then there exists a point q ∈ E
such that d(p, q) < δ/2. Now we show that Nδ/2(q) ⊂ Nε(p). Let w ∈ Nδ/2(q). Then
d(q, w) < δ/2. Moreover, we know by our choice of q we have d(p, q) < δ/2. Then by the
triangle inequality we have

d(p, w) ≤ d(p, q) + d(q, w) < δ/2 + δ/2 = δ < ε
17



Hence, d(p, w) < ε and w ∈ Nε(p). It follows Nδ/2(q) ⊂ Nε(p) so then p ∈ Nδ/2(q) ⊂ U .
Thus, B is a countable base for our separable metric space (X, d). □

Exercise (24). Let X be a metric space in which every infinite subset has a limit point.
Prove that X is separable.

Proof. Let X be a metric space in which every infinite subset has a limit point. Suppose we
try to construct a set by the following method. Fix δ > 0. Then pick x1 ∈ X. Then having
chosen x1, ..., xj ∈ X, choose xj+1 ∈ X, if possible, so that d(xi, xj+1) ≥ δ for i = 1, ..., j.
Suppose we could iterate this process indefinitely. Then we would have constructed an
infinite subset of X that has no limit points, since all points are isolated. This contradicts
the assumption that every infinite subset has a limit point. Hence, our construction of a set
of points in X iterates only a finite number of times. Hence, X can be covered by finitely
many neighborhoods of radius δ. We use this fact to show X must be separable.
Define the set Sk = {xk

1, x
k
2, ..., x

k
nk
} such that

X ⊂ N1/k(x
k
1) ∪N1/k(x

k
2) ∪ · · · ∪N1/k(x

k
nk
)

where k ∈ N. Then Sk has a total number of nk distinct points such that neighborhoods of
radius 1/k cover X. Then define S = ∪∞

i=1Si. Now we show S is a countable dense subset
of X. Let x ∈ X. If x ∈ S then we are done. Now consider the case where x /∈ S. We show
x must be a limit point of S. Take ε > 0 and Nε(x). By the archimedean property there
exists a sufficiently large n ∈ N such that 0 < 1/n < ε. Fix n. Then there exists a point
p ∈ Sn such that x ∈ N1/n(p). Since we assumed x /∈ S it follows x ̸= p. Then we have
d(x, p) < 1/n < ε. Then (Nε(x) − {x}) ∩ S ̸= ∅. This holds for all ε since our choice of ε
was arbitrary. It follows that x is a limit point of S. Therefore, S is a dense subset of X.
Moreover, S consists of a countable union of finite sets which is countable. Hence, S is a
countable dense subset of X. It follows X is a separable metric space. □

Exercise (25). Prove that every compact metric space K has a countable base, and that K
is therefore separable.

Proof. Take an open cover ofK as ∪x∈KN1/n(x). SinceK is compact there is a finite subcover

K ⊂ N1/n(x1) ∪N1/n(x2) ∪ · · · ∪N1/n(xm)

Let Sn be the set of points that correspond to the centers of the neighborhoods of radius
1/n of a finite subcover of K such that {x1, x2, ..., xm} in the previous example. Then take
S = ∪∞

i=1Si.
Now we show S is a countable dense subset of K. S is countable since it is a countable

union of a finite set of points. Now we show S is dense in K. Let p ∈ K. If p ∈ S we are
done. Now consider p /∈ S and some arbitrary neighborhood Nε(p) where ε > 0. Then there
exists a sufficiently large n such that 0 < 1/n < ε. It follows there exists some x ∈ Sn such
that d(x, p) < 1/n. Hence x ∈ (Nε(p) − {p}) ∩ S. Our choice of ε was arbitrary. It follows
(Nε(p)− {p}) ∩ S ̸= ∅ for all ε. Hence, p is a limit point of S. Then S is a countable dense
subset of K. It follows K is a separable metric space. Moreover, by exercise 23 it follows K
has a countable base. □

Exercise (26). Let X be a metric space in which every infinite subset has a limit point.
Prove that X is compact.
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Proof. Take {Gα} to be an open cover of X. Since every infinite subset has a limit point, it
follows X has a countable subcover. Then X ⊂ G1∪G2∪ · · · . For the sake of contradiction,
suppose there is no finite subcover. Then take Fn = (G1 ∪ G2 ∪ · · · ∪ Gn)

c. It follows Fn

is non-empty for all n ∈ N since there is no finite subcover. For each Fn take xn ∈ Fn.
Then let E = ∪∞

i=1xi. Then E is an infinite subset and by the hypothesis there exists some
limit point of E, say q. Since X ⊂ G1 ∪ G2 ∪ · · · it follows q ∈ Gj for some j. Note that
Gj is open so there exists some ε > 0 such that Nε(q) ⊂ Gj. Moreover, since q is a limit
point, it follows the neighborhood Nε(q) must contain an infinite number of points of E.
Therefore, an infinite number of points are in Gj. Note that by nature of construction of E,
all points xk /∈ Gj for all k ≥ j since xk ∈ (G1 ∪ · · · ∪Gj ∪ · · ·Gk)

c. It follows all but a finite
number of points are in Gj. Specifically, at most the points x1, x2, ..., xj−1 are in Gj. This is
a contradiction. Hence, the metric space X is compact. □

Exercise (27). Define a point p in a metric space X to be a condensation point of a set
E ⊂ X if every neighborhood of p contains uncountably many points of E.

Suppose E ⊂ Rk, E is uncountable, and let P be the set of all condensation points of E.
Prove that P is perfect and that at most countably many points of E are not in P . In other
words, show that P c ∩ E is at most countable.

Proof. We first show P is closed by proving that P c is open. Take a point p ∈ P c. It follows
p is not a condensation point so there exists some r > 0 such that (Nr(p) ∩ E) is at most
countable. Now we show Nr(p) ⊂ P c. Take a point q ∈ Nr(p). Then there exists ε such that
d(p, q)+ε < r. Then Nε(q) ⊂ Nr(p). Since Nr(p)∩E is at most countable and Nε(q) ⊂ Nr(p)
it follows Nε(q)∩E is at most countable. Hence, there exists neighborhood around q whose
intersection with E is at most countable. Thus, q is not a condensation point so q ∈ P c. It
follows Nr(p) ⊂ P c. Hence, P c is open. Then P is closed.

Now we show every point in P is a limit point. For the sake of contradiction, suppose there
exists some isolated point p. Then there exists some r > 0 such that (Nr(p)−{p})∩P = ∅.
Since we have a separable metric space, let D denote a countable dense subset of Rk. Then
for all q ∈ (Nr(p)− {p}) ∩ D, we have q is not a condensation point. Then for all q, take rq
as the largest radius such that Nrq(q)∩E is at most countable. This is well-defined since E
is uncountable so there is an upper bound to how large the radius will be before it intersects
uncountably many points of E. Then define the set T as

T =
⋃

q∈(Nr(p)−{p})∩D

Nrq(q)

Now we show Nr(p)− {p} ⊂ T . By nature of construction of T we know if x ∈ (Nr(p)−
{p}) ∩ D then x ∈ T so let x ∈ (Nr(p) − {p}) − D. Since (Nr(p) − {p}) ∩ P = ∅ we have
x /∈ P so x is not a condensation point. Then there exists rx > 0 such that Nrx(x) ∩ E
is at most countable. Then choose rx to be sufficiently small such that Nrx(x) ⊂ Nr(p).
Moreover, there exists w ∈ D such that d(x,w) < rx/2. Then let δ = d(x,w) < rx/2.

Now we show Nδ(w) ⊂ Nrx(x). Let a ∈ Nδ(w). Then d(a, w) < rx/2. By the triangle
inequality we have

d(a, x) ≤ d(a, w) + d(w, x)

≤ rx/2 + rx/2

≤ rx
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Hence a ∈ Nrx(x). Then x ∈ Nδ(w) ⊂ Nrx(x). Since Nrx(x) ∩ E is at most countable, it
follows Nδ(w) ∩ E is at most countable. Moreover, w ∈ Nr(p) since we chose rx such that
Nrx(x) ⊂ Nr(p) − {p}. Then we have w ∈ (Nr(p) − {p}) ∩ D which implies there is an
associated neighborhood Nrw(w) as one of the sets in the union for T . Furthermore, rw is
the largest radius such that Nrw(w)∩E is at most countable so then Nδ(w) ⊂ Nrw(w). Since
Nδ(w) contains x it follows x is also in Nrw(w). Hence x ∈ T . Then we have

(Nr(p)− {p}) ∩ D ⊂ T and (Nr(p)− {p})− D ⊂ T

Hence, (Nr(p)− {p}) ⊂ T . Then T is an open cover of (Nr(p)− {p}). Now consider

E ∩ T = E ∩
⋃

q∈(Nr(p)−p)∩D

Nrq(q)

=
⋃

q∈(Nr(p)−p)∩D

E ∩Nrq(q)

We know D is countable and that for each q that E ∩Nrq(q) is at most countable. It follows
that E ∩ T is at most a countable union of countable sets which is at most countable. Yet
p is a condensation point and we know (Nr(p)− {p}) ∩ E is uncountable. However,

E ∩ (Nr(p)− {p}) ⊂ E ∩ T

This is a contradiction. Hence, there does not exist any isolated points. Thus, all points are
limit points. Therefore, P is perfect.

Now we show that P c ∩ E is at most countable. Note that Rk has a countable base B

that consists of basic open sets Nr(p) where p ∈ D and r ∈ Q. Moreover, we have p ∈ P c.
Since P is closed then P c is open. By definition of a basis, we have P c = ∪α∈JVα where
Vα ∈ B for all α ∈ J and J is a countable index set. Note that Vα ∈ P c so then Vα ∩ E
is at most countable. Then E ∩ P c = E ∩ (∪α∈JVα) = ∪α∈J(E ∩ Vα). It follows we have a
countable union of at most countable sets which is at most countable. Hence, E ∩ P c is at
most countable.

Note that we never used a specific countably dense subset. We just used that fact that one
existed and denoted it as D. Moreover, we never used anything in particular to Rk. Hence,
the argument applies more generally to separable metric spaces. □

Exercise (28). Prove that every closed set in a separable metric space is the union of
a (possibly empty) perfect set and a set which is at most countable. (Corollary: Every
countable closed set in Rk has isolated points.)

Proof. Let C be a closed set in a separable metric space. We show that C = A ∪ B where
A is a perfect set (possibly empty) and B is a set that is at most countable. If C is finite or
countable, then let A = ∅ and B = C. Then we are done.
Now suppose C is uncountable. Then let P be the set of all condensation points of C. Note

that we showed in the previous exercise (27) that P is perfect under separable metric spaces.
Moreover, we showed that P c ∩ C is at most countable. Hence we have C = P ∪ (P c ∩ C).
This concludes the proof. □

Exercise (29). Prove that every open set in R is the union of an at most countable collection
of disjoint segments.

Proof. Note that R has a countable dense subset that is Q so then we have a countable base.
Call our countable base B. And an open set G is in B if and only if G = Nr(p) where
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r, p ∈ Q and r > 0. By definition of a base, we have every open set in R is a union of some
elements in B. Let U be an open set in R. Then U = ∪Vn∈B′Vn where B′ ⊂ B. Since B

is countable, it follows U is at most a countable union of open sets. Suppose all open sets
Vn were disjoint. Then U would be a countable union of disjoint open sets. However, we
may have Vi ∩ Vj ̸= ∅ for some Vi ̸= Vj ∈ B′. It follows, U is at most a countable union of
disjoint open sets. Hence, every open set in R is the union of at most a countable collection
of disjoint open sets. □

Exercise (30). Imitate the proof of Theorem 2.43 to obtain the following result:
If Rk = ∪∞

1 Fn where Fn is a closed subset of Rk, then at least one Fn has a nonempty
interior.

Equivalent statement: If Gn is a dense open subset of Rk, for n = 1, 2, 3..., then ∩∞
1 Gn is

not empty.

Proof. We prove the equivalent statement first. Let Gn be a dense open subset of Rk for all
n. We construct a sequence of neighborhoods Un recursively as follows.

Let a ∈ G1. Since G1 is open, there exists some open neighborhood Nra(a) such that
Nra(a) ⊂ G1. Then take R = ra/2. Then let U1 = NR(a). It follows U1 ⊂ G1.

Now suppose we constructed Un such that Un ⊂ Gn. We now construct Un+1 such that
Un+1 ⊂ Un and Un+1 ⊂ Gn+1. Let Un = Nr(p). Since Gn+1 is dense in Rk, there exists
q ∈ Gn+1 such that q ∈ (Nr(p) − {p}). Moreover, since q ∈ Gn+1 and Gn+1 is open, there
exists δ > 0 such that Nδ(q) ⊂ Gn+1. Then take ε as

ε = min

{
δ

2
,
r − d(p, q)

2

}
Then let Un+1 = Nε(q). Now we show Un+1 ⊂ Un. Let w ∈ Un+1. Then d(q, w) ≤ ε. Then
by the triangle inequality we have

d(p, w) ≤ d(p, q) + d(q, w)

≤ d(p, q) +
r − d(p, q)

2

≤ r + d(p, q)

2

<
2r

2
= r

Thus d(p, w) < r so w ∈ Nr(p). Hence, Un+1 ⊂ Un.
Now we show Un+1 ⊂ Gn+1. Let w ∈ Un+1. Then d(q, w) ≤ ε ≤ δ/2 < δ. Hence,

w ∈ Gn+1. Thus, Un+1 ⊂ Gn+1. Moreover, since Un+1 ⊂ Gn+1, the recursion can proceed to
construct Un+2.

Note that Un is closed and bounded. Then by Theorem 1.41 it follows Un is compact for
all n. Since we have Un ⊂ Gn for all n we have ∩∞

i U i ⊂ ∩∞
i Gi. Moreover, suppose we have

some finite intersection of sets of Un. Then we have

Unα = Un1 ∩ Un2 ∩ · · · ∩ Unm

where nα ≥ ni for all 1 ≤ i ≤ m. This follows because if nα ≥ ni for all i then Unα ⊂ Uni
for

all i. It follows any finite intersection is non-empty. Moreover, we have U1 ⊃ U2 ⊃ U3 ⊃ · · ·
so then by the corollary to Theorem 2.36 we have ∩∞

i=1U i ̸= ∅. But we know ∩∞
i U i ⊂ ∩∞

i Gi

so then ∩∞
i Gi must be non-empty. □
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3. Numerical Sequences and Series

Theorem (3.3). Suppose {sn} is a complex sequence and limn→∞ sn = s.

(d) lim
n→∞

1

sn
=

1

s
, provided that sn ̸= 0 for all n ∈ N and s ̸= 0.

Proof. □

Theorem (3.7). The subsequential limits of a sequence {pn} in a metric space form a closed
subset of X.

Proof. Let E be the set of all subsequential limits of the sequence {pn}. Let q be a limit
point of E. We show q must be in E. If q is a limit point of E, then for all r > 0 we have
(Nr(q)−{q})∩E ̸= ∅. Then take em ∈ (N1/m(q)−{q})∩E for each m ∈ N. Then each em
is a subsequential limit such that d(em, q) < 1/m.

Now we construct a subsequence of {pn} as follows. Take n1 ∈ N such that d(e1, pn1) <
1− d(e1, q). Then by the triangle inequality we have

d(q, pn1) ≤ d(q, e1) + d(e1, pn1) < 1

Hence, pn1 ∈ (N1(q) − {q}) ∩ P . More generally, take nk ∈ N such that d(ek, pnk
) <

1/k − d(ek, q) and nk > nk−1 which is possible since ek is a subsequential limit of {pn} so
there is an infinitely many points in the sequence {pn} that are have a distance less than
any ε > 0 from ek. Again, by the triangle inequality we have

d(q, pnk
) ≤ d(q, ek) + d(ek, pnk

) < 1/k

Hence pnk
∈ (N1/k(q)− {q}) ∩ P . It follows {pnk

}k∈N is a subsequence of {pn}.
Now we show {pnk

}k∈N is a subsequence that converges to q. Consider ε > 0. Then there
exists m ∈ N such that 0 < 1/m < ε. By how we constructed {pnk

}k∈N, it follows for all

d(pnj
, q) < 1/m < ε

for all j ≥ m. Hence, limk→∞ pnk
= q. Since, q is a limit of some subsequence of {pn}, it

follows q ∈ E. Hence, E is closed. □

Theorem. If {pn} is a sequence in X and if EN consists of points pN , pN+1, pN+2, ..., then
{pn} is a Cauchy sequence if and only if

lim
n→∞

diam EN = 0

Proof. We prove the forward direction first. Let {pn} be a Cauchy sequence. Since {pn}
is a Cauchy sequence, then for any ε/2 > 0 there exists M ∈ N such that d(pi, pj) < ε/2
for all i, j ≥ M . Then let T = {d(pi, pj) | i, j ≥ M}. It follows supT ≤ ε/2 < ε.
Note that diam EM = supT < ε. Moreover, since EK ⊃ EK+1 for all K ∈ N it follows
ε > diam EM ≥ diam EM+1 ≥ · · · . Hence, |diam EN | < ε for all N ≥ M . Then by
definition of converges, we have limn→∞ diam EN = 0.

Now we prove the reverse direction. Suppose limn→∞ diam EN = 0. We show that {pn}
must be a Cauchy sequence. Consider ε > 0. Since limn→∞ diam EN = 0, there exists
M ∈ N such that |diam EN | < ε for all N ≥ M . Then by definition of the diameter of EN

we have d(pi, pj) ≤ diam EM < ε for all i, j ≥ M . It follows {pn} is a Cauchy sequence since
we found an appropriate M for an arbitrary ep. □
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Theorem (3.10(a)). If E is the closure of a set E in a metric space X, then

diam E = diam E

Proof. Since E ⊂ E it follows diam E ≤ diam E. Moreover, if E = E then we are done.
Thus, consider the case where E ⊊ E. Suppose for the sake of contradiction that diam E <
diam E. Then take α such that diam E < α < diam E. Since E ⊊ E let p ∈ E and
q ∈ E − E such that d(p, q) > α. Note that q is a limit point so then there exists w ∈ E
such that d(w, q) < d(p, q)−α. Since w ∈ E we also have d(p, w) < α. Then by the triangle
inequality we have

d(p, q) ≤ d(p, w) + d(w, q) < d(p, q)

This is a contradiction. Hence, diam E ̸< diam E. Therefore, diam E = diam E. □

Theorem (3.10(b)). If Kn is a sequence of compact sets in X such that Kn ⊃ Kn+1 for all
n and if limn→∞ diam Kn = 0, then ∩∞

1 Kn consists of exactly one point.

Proof. Suppose ∩∞
1 Kn consists of at least two points, say p and q. Then p, q ∈ Kn for all n.

Note that p ̸= q so d(p, q) > 0. Then by definition of diameter we have diam Kn ≥ d(p, q)
for all n. However, we must have diam Kn < d(p, q) for all but a finite number of Kn since
limn→∞ Kn = 0. This is a contradiction. It follows there is at most one point in ∩∞

1 Kn.
Now we show ∩∞

1 Kn contains exactly one point. Since we have a sequence of nonempty
compact sets such that Kn ⊃ Kn+1 for all n, by the corollary to Theorem 2.36, it follows
∩∞

1 Kn is nonempty. Moreover, we have shown previously that ∩∞
1 Kn has at most one point.

Hence, ∩∞
1 Kn contains exactly one point. □

Theorem (3.11(a)). In any metric space X, every convergent sequence is a Cauchy sequence.

Proof. Let {pn} be a convergent sequence in metric space X. We show {pn} is a Cauchy
sequence. Let ε > 0. Since {pn} is a convergent sequence, there exists a point p ∈ X such
that

d(p, pn) < ε/2

for all n ≥ N for some N ∈ N. Then by the triangle inequality we have

d(pi, pj) ≤ d(pi, p) + d(p, pj) < ε/2 + ε/2 = ε

for all i, j ≥ N . Hence {pn} is a Cauchy sequence. □

Theorem (3.11(b)). If X is a compact metric space and if {pn} is a Cauchy sequence in
X, then {pn} converges to some point of X.

Proof. Suppose the range of {pn} is finite. Then for point in the range, say p, we must have
p = pn1 = pn2 = · · · . Otherwise, if each point in the range has only a finite number of
associated points in the sequence, we would must have a finite sequence. However, {pn} is
countably infinite. So then p is at least a subsequential limit of {pn}. But since {pn} is a
Cauchy sequence, it follows that for any ε > 0 we have d(pi, pj) < ε for all i, j ≥ N for some
N ∈ N. In particular, we must be able to get arbitrarily close to the at least subsequential
limit p. Hence, for any ε > 0 we have d(p, pi) < ε for all i ≥ N for some N ∈ N. It follows
that {pn} must converge to point p.

Now suppose the range of {pn} is infinite. Note that X is a compact metric space which
implies any infinite subset of X has a limit point in X. Since the range of {pn} is infinite,
it follows {pn} has a limit point in X, call p. Let ε > 0. Since p is a limit point, the
neighborhood Nε(p) contains infinitely many points of {pn}.
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For the sake of contradiction, suppose Nε(p) does not contain infinitely many points of
{pn}. Then for all N ∈ N, there exists i ≥ N such that d(p, pi) ≥ ε. Moreover, since {pn} is
a Cauchy sequence, for ε/2 there exists M ∈ N such that d(p).... □

Theorem (3.11(c)). In Rk, every Cauchy sequence converges.

Proof. □
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4. Continuity

Theorem (4.2). Let X, Y , E, f , and p be as in Definition 4.1. Then

lim
x→p

f(x) = q

if and only if
lim
n→∞

f(pn) = q

for every sequence (pn) in E such that

pn ̸= p and lim
n→∞

pn = p

Proof. Let X, Y , E, f , and p be defined as in Definition 4.1. We prove the forward direction
first. Let limx→p f(x) = q and suppose we have a sequence (pn)n∈N in E such that pn ̸= p
and limn→∞ pn = p. We show that limn→∞ f(pn) = q. It suffices to show that for ε > 0 there
exists N ∈ N such that dY (f(pn), q) < ε for all n ≥ N . Note that limx→p f(x) = q so then
there exists δ > 0 such that dY (f(x), q) < ε for all x where 0 < dX(x, p) < δ. Moreover,
since limn→∞ pn = p and pn ̸= p it follows there exists N such that 0 < dX(pn, p) < δ for all
n ≥ N . Hence, dY (f(pn), q) < ε for all n ≥ N . Then by definition of a limit of a sequence,
we have limn→∞ f(pn) = q.

Now we prove the reverse direction. We prove the contrapositive. Suppose limx→p f(x) ̸=
q. Then for some ε > 0, for all δ > 0, there exists x ∈ X such that 0 < dX(x, p) < δ yet
dY (f(x), q) ≥ ε. Then we construct the sequence (pn)n∈N as follows. For all n ∈ N, take
pn such that dX(pn, p) < 1/n and pn ̸= p and dY (f(pn), q) ≥ ε. We show limn→∞ pn = p.
Consider ε′ > 0. Then there exists a natural numberm such that 1/m < ε′. Then dX(pn, p) <
1/m < ε′ for all n ≥ m. Hence, pn → p. Now we show limn→∞ f(pn) ̸= q. By nature of
construction of (pn) we have dY (f(pn), q) ≥ ε for all n ∈ N. Hence, limn→∞ f(pn) ̸= q. This
proves the contrapositive. □

Theorem (4.4). Suppose E ⊂ X, a metric space, p is a limit point of E, f and g are
complex functions on E, and

lim
x→p

f(x) = A and lim
x→p

g(x) = B

Then

(a) limx→p(f + g)(x) = A+B
(b) limx→p(fg)(x) = AB
(c) limx→p(f/g)(x) = A/B, if B ̸= 0.

Proof. Suppose E ⊂ X, a metric space, p is a limit point of E, and f and g are complex
functions on E, and limx→p f(x) = A and limx→p g(x) = B. Then by Theorem 4.2 we have for
every sequence (pn) where pn ̸= p and pn → p that limn→∞ f(pn) = A and limn→∞ g(pn) = B.
By Theorem 3.3 we know

lim
n→∞

f(pn) + g(pn) = lim
n→∞

(f + g)(pn) = A+B

for all sequences (pn). Hence, limx→p(f + g)(x) = A+B. Similar arguments prove parts (b)
and (c). □
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Theorem (4.6). In the situation given in Definition 4.5, assume also that p is a limit point
of E. Then f is continuous at p if and only if limx→p f(x) = f(p).

Proof. Let p be a limit point of E. We prove the forward direction first. Suppose f is
continuous at p. Then for every ε there exists δ such that for all x ∈ E where dX(x, p) < δ
we have dY (f(x), f(p)) < ε. Let A be the set defined as

A = {x ∈ E | dX(x, p) < δ}
Moreover, since p is a limit point of E it follows (A− {p}) ∩ E ̸= ∅. Define B as the set

B = {x ∈ E | 0 < dX(x, p) < δ}
Then B is nonempty. Moreover, since B ⊂ A it follows if 0 < dX(x, p) < δ and x ∈ E then
dY (f(x), f(p)) < ε. Hence, limx→p f(x) = f(p).

Now we prove the reverse direction. Suppose limx→p f(x) = f(p). Let ε > 0. Then there
exists δ > 0 such that if 0 < dX(x, p) < δ and x ∈ E then dY (f(x), f(p)) < ε. Furthermore,
if dX(x, p) = 0 then x = p and dY (f(p), f(p)) = 0 < ε. Hence if dX(x, p) < δ and x ∈ E
then dY (f(x), f(p)) < ε. It follows f is continuous at p. □

Theorem (4.7). Suppose X, Y , Z are metric spaces, E ⊂ X, f maps E into Y , g maps
the range of f , f(E), into Z, and h is the mapping of E into Z defined by

h(x) = g(f(x)), x ∈ E

If f is continuous at a point p ∈ E and if g is continuous at the point f(p), then h is
continuous at p.

Proof. Take ε > 0. Since g is continuous at the point f(p), there exists η > 0 such that
if y ∈ f(E) and dY (y, f(p)) < η then dZ(g(y), g(f(p))) < ε. Moreover, since f is contin-
uous at point p, it follows there exists δ > 0 such that if x ∈ X and dX(x, p) < δ then
dY (f(x), f(p)) < η. But this implies dZ(g(f(x)), g(f(p))) < ε or dZ(h(x), h(p)) < ε. It
follows h is continuous at point p. □

Theorem (4.8). A mapping f of a metric space X into a metric space Y is continuous on
X if and only if f−1(V ) is open in X for every open set V in Y .

Proof. We prove the forward direction first. □

Note. If x is a point in the domain of definition of the function f at which f is not continuous,
then f is discontinuous at x. Note that if we say f is continuous at a point p then it follows
p is within the domain definition of f .

Definition (4.25). Let f be defined on (a, b). Consider any point x such that a ≤ x < b.
We write

f(x+) = q

if f(tn) → q as n → ∞, for all sequences (tn)n∈N in (x, b) such that tn → x. To obtain the
definition of f(x−), for a < x ≤ b, we restrict ourselves to sequences (tn) in (a, x).

Remark. Note that the above definitions for left-handed and right-handed limits are gener-
alizations to the definition of a limit in Theorem 4.2. In fact, this definition uses the same
idea as Theorem 4.2. Note that for f(x+) we allow for the case x = a even though f is only
defined on (a, b). This is an important observation about limits, the limit of a map f at a
particular point x for may be defined even though f may not be defined at x. Consider the
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case where f : (−1, 1) → R defined as f(x) = x2. It is intuitive there is a right hand limit at
x = −1 and a left hand limit at x = 1.

Lemma. Let f be defined on (a, b) and x ∈ (a, b). Then limt→x f(t) exists if and only if

f(x+) = f(x−) = lim
t→x

f(t)

Definition (4.26). Let f be defined on (a, b). If f is discontinuous at a point x and if
f(x+) and f(x−) exist, then f is said to have a discontinuity of the first kind, or a simply
discontinuity, at x. Otherwise the discontinuity is said to be of the second kind.

Example. Let f : R → R. Then define f(x) as

f(x) =

{
x x ̸= 0

1 x = 0

This has a simple discontinuity at x = 0 since left hand and right hand limits are 0. Consider
g : R → R defined as

g(x) =

{
−1 x < 0

1 x ≥ 0

Then the left hand limit at f(0+) = −1 and f(0−) = 1. Hence, f has a discontinuity of the
second kind at x = 0.

Example (4.27). Three examples from the book.

(a) Define

f(x) =

{
1 x ∈ Q
0 x ∈ R−Q

Then f has a discontinuity of the second kind at every point x, since neither f(x+)
nor f(x−) exists.

(b) Define

f(x) =

{
x x ∈ Q
0 x ∈ R−Q

Then f is continuous at x = 0 and has a discontinuity of the second kind at every
other point.

(c)

Definition (4.28). Let f be real on (a, b). Then f is said to be monotonically increasing on
(a, b) if a < x < y < b implies f(x) ≤ f(y). If the last inequality is reversed, we obtain the
definition of a monotonically decreasing function. The class of monotonic functions consist
of both the increasing and decreasing functions.

Theorem (4.29). Let f be monotonically increasing on (a, b). Then f(x+) and f(x−) exist
at every point of x of (a, b). More precisely,

sup
a<t<x

f(t) = f(x−) ≤ f(x) ≤ f(x+) = inf
x<t<b

f(t)

Furthermore, if a < x < y < b, then

f(x+) ≤ f(y−)

Analogous results hold for monotonically decreasing functions.
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Proof. We first prove that f(x−) exists at every point x ∈ (a, b). Arbitrarily choose x ∈ (a, b).
Define the set A as A = {f(t) ∈ R | a < t < x}. Since f is monotonically increasing, it
follows f(t) ≤ f(x) for all a < t < x. Hence, f(x) is an upper bound of A. Moreover, f is
a real valued function so A ⊂ R and A is non-empty since there exists a real number in the
open interval (a, x) and f is defined for (a, b) ⊃ (a, x). Hence, A has a least upper bound.
Take α = supA.

For the sake of contradiction suppose there exists a sequence (tn)n∈N in (a, x) such that
limn→∞ tn = x but limn→∞ f(tn) ̸= α. Then for some ε > 0 for all M ∈ N there exists
m ≥ M such |α − f(tm)| ≥ ε. Moreover, α > f(tm) by definition of α so then equivalently
we have α− f(tm) ≥ ε.

Now take c ∈ (a, x). Then a < c < x. Since limn→∞ tn = x there exists I ∈ N such
that |x − ti| < x − c for all i ≥ I. Since ti ∈ (a, x), ti < x. Then x − ti < x − c for all
i ≥ I. Then c < ti for all i ≥ I. By the previous paragraph, there exists m0 ≥ I such that
α − f(tm0) ≥ ε. Equivalently, α − ε ≥ f(tm0). Since m0 ≥ I it follows tm0 > c. Note f is
monotonically increasing so f(c) ≤ f(tm0) ≤ α − ε. Our choice of c was arbitrary. Hence
f(c) ≤ α − ε for all c ∈ (a, b). It follows α − ε is an upper bound of A. This contradicts α
being the least upper bound of A. Therefore, the sequence (tn)n∈N does not exist. Hence,
for every sequence (sn)n∈N in (a, x) where limn→∞ sn = x we must have limn→∞ f(sn) = α.
It follows f(x−) = α. We also proved in the first paragraph that f(x) is an upper bound of
A. In total we have

sup
a<t<x

f(t) = f(x−) ≤ f(x)

for all x ∈ (a, b). An analogous argument shows

f(x) ≤ f(x+) = inf
x<t<b

f(t)

Now we show that if a < x < y < b, then f(x+) ≤ f(y−). We prove by contradiction.
Suppose f(x+) > f(y−). Then let (xn)n∈N be a sequence in (x, b) such that limn→∞ xn = x
and limn→∞ f(xn) = f(x+) and let (yn)n∈N be a sequence in (a, y) such that limn→∞ yn = y
and limn→∞ f(yn) = f(y+). Then take ε1 = (f(x+)− f(y−))/2 and ε2 = (y − x)/2. Then
there exists N1 such that |f(x+)− f(xn)| < ε1 for all n ≥ N1 and N2 such that |x−xn| < ε2
for all n ≥ N2. Similarly, there exists M1 such that |f(y−)−f(ym)| < ε1 for all m ≥ M1 and
M2 such that |y−ym| < ε2 for all m ≥ M2. Take N = max{N1, N2} and M = max{M1,M2}.
Now we use these inequalities to show a contradiction.

By the four inequalities we have

f(x+) + f(y−)

2
= f(x+)− ε1 < f(xn) < f(x+) + ε1

f(y−)− ε1 < f(ym) < f(y−) + ε1 =
f(x+) + f(y−)

2

x− ε2 <xn < x+ ε2 =
x+ y

2
x+ y

2
= y − ε/2 <ym < y + ε/2

for all n ≥ N and m ≥ M . Then xn < ym but f(xn) > f(ym) for all n ≥ N and m ≥ M .
Take i ≥ N and j ≥ M . Then we have xi < yj but f(xi) > f(yj) which is a contradiction
to f being monotonically increasing. It follows f(x+) ≤ f(y−). □
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Exercise (1). Suppose f is a real function defined on R which satisfies

lim
h→0

[f(x+ h)− f(x− h)] = 0

for every x ∈ R. Does this imply f is continuous?

Proof. This does not imply f is continuous. Define f : R → R as

f(x) =

{
1 x ̸= 0

0 x = 0

First consider when x > 0. Then let ε > 0. Then take δ such that 0 < δ < x. Then if
0 < |h−0| < δ we have x+h, x−h > 0. It follows |(f(x+h)−f(x−h))−0| = |1−1−0| = 0 < ε.
Hence, the limit holds when x > 0. A similar argument shows the limit holds when x < 0.
Now consider when x = 0. Let ε > 0. Then let δ > 0 be arbitrary. Then if h ∈ R and
0 < |h− 0| < δ then x− h = −h and x+ h = h. Then either −h > 0 and h < 0 or −h < 0
and h > 0. For both cases f(x+h) = f(x−h). It follows |(f(x+h)−f(x−h))−0| = 0 < ε.
Hence, the limit holds for all x. However, f is not continuous at x = 0. In fact, it is a
discontinuity of the first kind. □

Exercise (2). If f is a continuous mapping of a metric space X into a metric space Y , prove
that

f(E) ⊂ f(E)

for every set E ⊂ X. Show, by an example, that f(E) can be a proper subset of f(E).

Proof. Let f be a continuous mapping of a metric space X into a metric space Y . We show
f(E) ⊂ f(E) for all E ⊂ X. Let E ⊂ X and y ∈ f(E). Then there exists x ∈ E such

that f(x) = y. There are two cases. First suppose x ∈ E. Then y = f(x) ∈ f(E) ⊂ f(E).
Secondly, consider the case where x ∈ E ′ where E ′ denotes the set of all limits points of
E. We show either f(x) ∈ f(E) or f(x) is a limit point of f(E). Take ε > 0. Since f
is continuous at x for ε > 0 there exists δ > 0 such that if p ∈ E and dX(p, x) < δ then
dY (f(p), f(x)) < ε. Since x is a limit point of E we know (NX

δ (x) − {x}) ∩ E ̸= ∅ 1. Now
suppose f((NX

δ (x) − {x}) ∩ E) = {f(x)}. Since f((NX
δ (x) − {x}) ∩ E) ⊂ f(E) it follows

f(x) ∈ f(E). Then y ∈ f(E).
Now suppose f((NX

δ (x)−{x})∩E) ̸= {f(x)}. Note that f(NX
δ (x)∩E) ⊂ NY

ε (f(x)) and
then f((NX

δ (x)− {x}) ∩ E) ⊂ NY
ε (f(x)). Since f((NX

δ (x)− {x}) ∩ E) ̸= {f(x)} it follows

∅ ̸= f((NX
δ (x)− {x}) ∩ E)− {f(x)} ⊂ NY

ε ((f(x))− {f(x)}
It follows (NY

ε ((f(x))− {f(x)}) ∩ f(E) ̸= ∅ for all ε > 0. Hence, f(x) = y is a limit point

of f(E). Then y ∈ f(E).

An example where f(E) ⊊ f(E) is the following. Let X = Q and Y = R. Then define
f : X → Y as f(x) = x. Moreover, define the distance functions as dX : Q × Q → R as
dX(p, q) = |p − q| and dY : R × R → R as dY (p, q) = |p − q|. Now we show f is continuous
on Q. Let p ∈ Q. Let ε > 0. Then let δ = ε. It follows if dX(p, q) < δ and q ∈ Q then
dY (f(p), f(q)) = dY (p, q) < δ = ε. Hence, f is continuous on Q. Let E = Q = X. Then

E = X. Hence, f(E) = Q. And f(E) = Q and f(E) = Q = R. Therefore, f(E) ⊊ f(E). □

1NX
δ (x) denotes the neighborhood of radius δ about point x with the distance function dX associated

with metric space (X, dX).
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Exercise (3). Let f be a continuous real function on a metric space X. Let Z(f) be the set
of all p ∈ X at which f(p) = 0. Prove that Z(p) is closed.

Proof. Note f is a real function so f(X) ⊂ R. We show X−Z(f) is open. Let q ∈ X−Z(f).
Then f(q) ̸= 0. Take ε = |f(q)|. Since f is continuous there exists δ such that for all
x ∈ X and dX(x, q) < δ we have dY (f(x), f(q)) < ε = |f(q)|. Now let w ∈ NX

δ (q). Then
dX(w, q) < δ so dY (f(w), f(q)) < ε. Then

|f(w)− f(q)| < |f(q)|
Then

−|f(q)| < f(w)− f(q) < |f(q)|
Then

f(q)− |f(q)| < f(w) < f(q) + |f(q)|
Then either f(w) > 0 or f(w) < 0 so in either case f(w) ̸= 0. It follows NX

δ (q)∩Z(f) = ∅.
So NX

δ (q) ⊂ X − Z(f). Hence, X − Z(f) is open and Z(f) is closed. □

Exercise (4). Let f and g be continuous mappings of a metric space X into a metric space
Y and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) = f(p) for
all p ∈ E, prove that g(p) = f(p) for all p ∈ X. (In other words, a continuous mapping is
determined by its values on a dense subset of its domain.)

Proof. First we show that if E is a dense subset of X, then f(E) is dense in f(X). To show
f(E) is dense in f(X) it suffices to show that every point in f(X) is in f(E) or is a limit
point of f(E). Let y ∈ f(X). Then there exists x ∈ X such that f(x) = y. There are two
cases: either there exists x ∈ E such that f(x) = y or there does not exist x ∈ E such that
f(x) = y. If there exists x ∈ E such that f(x) = y then y ∈ f(E). Now suppose there does
not exist x ∈ E such that f(x) = y. Then we have f(x0) = y for x0 ∈ Ec. Take ε > 0. Then
consider the open neighborhood NY

ε (y) in Y . Since f is continuous it follows f−1(NY
ε (y))

is open in X. Moreover, x0 ∈ f−1(NY
ε (y)). Since f−1(NY

ε (y)) and x0 ∈ f−1(NY
ε (y)), there

exists δ > 0 such that NX
δ (x0) ⊂ f−1(NY

ε (y)). Moreover, because E is dense inX and x0 /∈ E
it follows (NX

δ (x0)−{x0})∩E ̸= ∅. Let q ∈ (NX
δ (x)−{x})∩E. Then f(NX

δ (x0)) ⊂ NY
ε (y)

and f(q) ∈ NY
ε (y) but also f(q) ∈ f(E). Since y /∈ f(E) it follows f(q) ̸= y. It follows

f(q) ∈ (NY
ε (y) − {y}) ∩ f(E) so (NY

ε (y) − {y}) ∩ f(E)) ̸= ∅. Hence, y is a limit point of
f(E). It follows f(E) is dense in f(X).

Now we show if g(p) = f(p) for all p ∈ E, then g(p) = f(p) for all p ∈ X. Let q ∈ X −E.
For the sake of contradiction, suppose g(q) ̸= f(q). Then dY (g(q), f(q)) ̸= 0. Then take
δ = 1

2
dY (g(q), f(q)). ThenNY

δ (g(q))∩NY
δ (f(q)) = ∅. Since g and f are continuous mappings

it follows their inverse images are open. Moreover, q ∈ g−1(NY
δ (g(q)))∩f−1(NY

δ (f(q))). This
is a finite intersection of open sets which is open. Then consider some open neighborhood
around q, say Vq, in X which is a subset of this intersection, that is Vq ⊂ g−1(NY

δ (g(q))) ∩
f−1(NY

δ (f(q))). Since E is dense in X it follows E ∩Vq ̸= ∅. Moreover, q /∈ E so then there
exists w ̸= q such that w ∈ E∩Vq. Since w ∈ E it follows f(w) = g(w). Then f(w) = g(w) ∈
NY

δ (g(q)) and f(w) = g(w) ∈ NY
δ (f(q)). This contradicts the fact NY

δ (g(q))∩NY
δ (f(q)) = ∅.

Hence, g(q) = f(q) for all q ∈ X −E. By the hypothesis we know g(p) = f(p) for all p ∈ E.
Hence, g(x) = f(x) for all x ∈ X. □

Exercise (5).

Proof. □
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Exercise (6). If f is defined on E, the graph of f is the set of points (x, f(x)), for x ∈ E.
In particular, if E is the set of real numbers, and f is real-valued, the graph of f is a subset
of the plane. Suppose E is compact, and prove that f is continuous on E if and only if its
graph is compact.

Proof. Let G = {(x, f(x)) ∈ R2 | x ∈ E}. We prove the forward direction first. We know E
is compact and f is continuous on E. Then f(E) is compact and f is uniformly continuous
on E. To show G is compact, it is sufficient to show that every infinite subset of G has a limit
point in G. Let U be an infinite subset of G. Define the projection function π : R× R → R
as π(a, b) = a for all a, b ∈ R. Then let Ux = π(U). Let (x1, y1) and (x2, y2) be distinct
points of U . Since U ⊂ G and G is the graph of the function f it follows x1 ̸= x2. Hence,
Ux has at least the same cardinality as U . Then Ux is an infinite subset of E. Since E is
compact, it follows Ux has a limit point in E, say x0.

Now we show (x0, f(x0)) ∈ G is a limit point of U . Since x0 is a limit point of Ux, there
exists a sequence (xn)n∈N such that xn ̸= x for all n and limn→∞ xn = x. Moreover, since f
is continuous and x0 is a limit point we have limn→∞ f(xn) = f(x0). Take ε > 0. Then there
exists δ > 0 such that if p ∈ E and 0 < |p−x0| < δ then |f(p)− f(x0)| < ε/2. Moreover, we

can choose δ to be sufficiently small such that
√
δ2 + (ε/2)2 < ε. Furthermore, since xn → x

it follows there exist xi ∈ Ux such that 0 < |xi−x0| < δ so then |f(xi)− f(x0)| < ε/2. Then
we have

0 <
√
(xi − x0)2 + (f(xi)− f(x0))2 < ε

so then
(xi, f(xi)) ∈ (Nε(x0, f(x0))− {(x0, f(x0))}) ∩ U

It follows (x0, f(x0)) is a limit point of U . Then every infinite subset of G has a limit point
in G. Hence, G is compact.
Now we prove the reverse direction. □

Exercise (9). Show that the requirement in the definition of uniform continuity can be
rephrased as follows, in terms of diameters of sets: To every ε > 0 there exists a δ > 0 such
that diamf(E) < ε for all E ⊂ X with diamE < δ.
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